Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 380
Filtrar
1.
PLoS Negl Trop Dis ; 18(3): e0012009, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38512811

RESUMO

Schistosomiasis is the second most widespread parasitic disease affecting humans. A key component of today's infection control measures is the diagnosis and monitoring of infection, informing individual- and community-level treatment. However, newly acquired infections and/or low parasite burden are still difficult to diagnose reliably. Furthermore, even though the pathological consequence of schistosome egg sequestration in host tissues is well described, the evidence linking egg burden to morbidity is increasingly challenged, making it inadequate for pathology monitoring. In the last decades, omics-based instruments and methods have been developed, adjusted, and applied in parasitic research. In particular, the profiling of the most reliable determinants of phenotypes, metabolites by metabolomics, emerged as a powerful boost in the understanding of basic interactions within the human host during infection. As such, the fine detection of host metabolites produced upon exposure to parasites such as Schistosoma spp. and the ensuing progression of the disease are believed to enable the identification of Schistosoma spp. potential biomarkers of infection and associated pathology. However, attempts to provide such a comprehensive understanding of the alterations of the human metabolome during schistosomiasis are rare, limited in their design when performed, and mostly inconclusive. In this review, we aimed to briefly summarize the most robust advances in knowledge on the changes in host metabolic profile during Schistosoma infections and provide recommendations for approaches to optimize the identification of metabolomic signatures of human schistosomiasis.


Assuntos
Schistosoma , Esquistossomose , Animais , Humanos , Schistosoma/genética , Esquistossomose/parasitologia , Metaboloma , Biomarcadores , Morbidade
2.
Parasitol Int ; 99: 102830, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38016629

RESUMO

BACKGROUND: The construction of Lake Kariba brought about a rise in the incidence of schistosomiasis in its surrounding towns of Kariba (Zimbabwe) and Siavonga (Zambia). After extensive control programs in Kariba, schistosomiasis prevalence dropped significantly. The objective of this study was to revisit the same localities sampled by Chimbari et al. (2003), and provide an update on the snail community and prevalence of trematodes in the Northern shore of Lake Kariba while focusing on planorbid species. METHODS: Monthly sampling of snails at 16 sites along the Northern shoreline of Lake Kariba, near Kariba town, was undertaken for one year. Minimum one specimen per morphotype was identified using molecular barcoding (sequencing a fragment of cytochrome c oxidase I subunit (COI)). The infection status of snails was assessed by Rapid Diagnostic PCRs (RD-PCR), and trematode infections were genotyped by sequencing COI and 18S rDNA markers. RESULTS: We collected and identified seven snail species: Bulinus truncatus, Bulinus forskalii, Gyraulus sp., Physella acuta, Bellamya sp., Radix affinis plicatula and Pseudosuccinea columella. Physella acuta was the most abundant snail species (comprising 56.95% of the total snail count) and present at all sites. The B. truncatus population was found to be infected with the stomach fluke Carmyerius cruciformis, a Petasiger sp. and a trematode species belonging to the family Notocotylidae. No Schistosoma sp. infections were detected in our collected snail specimens. CONCLUSIONS: We report B. truncatus as an intermediate snail host for Carmyerius cruciformis, and the presence of three non-schistosome trematode species that have not been reported in Lake Kariba before. Furthermore, we detect a possible shift in the snail community when compared to the report by Chimbari et al. (2003): this is the first record of Gyraulus sp. in Lake Kariba, and we did not observe the previously reported B. pfeifferi, B. globosus and Radix natalensis. Although this shift in snail communities might have contributed to the absence of Schistosoma spp. detection in this study, further monitoring of final and intermediate hosts across the Kariba basin is essential to prove a decrease of schistosomiasis in the area.


Assuntos
Esquistossomose , Trematódeos , Animais , Lagos , Trematódeos/genética , Bulinus , Esquistossomose/epidemiologia , Schistosoma/genética
3.
Infect Dis Poverty ; 12(1): 104, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017557

RESUMO

BACKGROUND: Schistosoma mekongi is a human blood fluke causing schistosomiasis that threatens approximately 1.5 million humans in the world. Nonetheless, the limited available S. mekongi genomic resources have hindered understanding of its biology and parasite-host interactions for disease management and pathogen control. The aim of our study was to integrate multiple technologies to construct a high-quality chromosome-level assembly of the S. mekongi genome. METHODS: The reference genome for S. mekongi was generated through integrating Illumina, PacBio sequencing, 10 × Genomics linked-read sequencing, and high-throughput chromosome conformation capture (Hi-C) methods. In this study, we conducted de novo assembly, alignment, and gene prediction to assemble and annotate the genome. Comparative genomics allowed us to compare genomes across different species, shedding light on conserved regions and evolutionary relationships. Additionally, our transcriptomic analysis focused on genes associated with parasite-snail interactions in S. mekongi infection. We employed gene ontology (GO) enrichment analysis for functional annotation of these genes. RESULTS: In the present study, the S. mekongi genome was both assembled into 8 pseudochromosomes with a length of 404 Mb, with contig N50 and scaffold N50 lengths of 1168 kb and 46,759 kb, respectively. We detected that 43% of the genome consists of repeat sequences and predicted 9103 protein-coding genes. We also focused on proteases, particularly leishmanolysin-like metalloproteases (M8), which are crucial in the invasion of hosts by 12 flatworm species. Through phylogenetic analysis, it was discovered that the M8 gene exhibits lineage-specific amplification among the genus Schistosoma. Lineage-specific expansion of M8 was observed in blood flukes. Additionally, the results of the RNA-seq revealed that a mass of genes related to metabolic and biosynthetic processes were up-regulated, which might be beneficial for cercaria production. CONCLUSIONS: This study delivers a high-quality, chromosome-scale reference genome of S. mekongi, enhancing our understanding of the divergence and evolution of Schistosoma. The molecular research conducted here also plays a pivotal role in drug discovery and vaccine development. Furthermore, our work greatly advances the understanding of host-parasite interactions, providing crucial insights for schistosomiasis intervention strategies.


Assuntos
Esquistossomose , Trematódeos , Animais , Humanos , Filogenia , Saúde Pública , Schistosoma/genética , Esquistossomose/parasitologia , Cromossomos/genética
4.
Parasit Vectors ; 16(1): 263, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542265

RESUMO

BACKGROUND: Although schistosomiasis is a public health issue in Mali, little is known about the parasite genetic profile. The purpose of this study was to analyze the genetic profile of the schistosomes of Schistosoma haematobium group in school-aged children in various sites in Mali. METHODS: Urine samples were collected from 7 to 21 November 2021 and subjected to a filtration method for the presence S. haematobium eggs. The study took place in two schistosomiasis endemic villages (Fangouné Bamanan and Diakalèl), qualified as hotspots according to the World Health Organization (WHO) definition. Molecular genotyping on both Cox1 and ITS2/18S was used for eggs' taxonomic assignation. RESULTS: A total of 970 miracidia were individually collected from 63 school-aged children and stored on Whatman FTA cards for molecular analysis. After genotyping 42.0% (353/840) and 58.0% (487/840) of miracidia revealed Schistosoma bovis and S. haematobium Cox1 profiles, respectively; 95.7 (885/925) and 4.3% (40/925) revealed S. haematobium and S. haematobium/S. curassoni profiles for ITS/18S genes, respectively. There was a significant difference in the Cox1 and ITS2/18S profile distribution according to the village (P < 0.0001). Overall, 45.6% (360/789) were hybrids, of which 72.0% (322/447) were from Diakalèl. Three hybrids' profiles (Sb/Sc_ShxSc with 2.3%; Sb/Sc_ShxSh with 40.5%; Sh_ShxSc with 2.8%) and one pure profile (Sh_ShxSh with 54.4%) were identified. CONCLUSION: Our findings show, for the first time to our knowledge, high prevalence of hybrid schistosomes in Mali. More studies are needed on population genetics of schistosomes at the human and animal interface to evaluate the parasite's gene flow and its consequences on epidemiology of the disease as well as the transmission to humans.


Assuntos
Parasitos , Esquistossomose Urinária , Esquistossomose , Criança , Animais , Humanos , Schistosoma haematobium/genética , Hotspot de Doença , Perfil Genético , Schistosoma/genética , Esquistossomose/epidemiologia
5.
Vet Parasitol ; 320: 109978, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37364501

RESUMO

Trematodiases are diseases caused by snail-borne trematode parasites that infect both animals and humans. Fascioliasis, schistosomiasis and paramphistomosis are some of these diseases and they affect millions of livestock, leading to significant economic losses. The aim of the study was to document freshwater snails occurring in selected study sites in the Free State and Gauteng provinces as well as identify and detect larval trematodes that they harbour. Samples were collected from a total of five study sites within two provinces of South Africa. Morphological features were used to identify snail species and were further confirmed genetically by polymerase chain reaction (PCR), sequencing and phylogenetic analysis. The larval trematodes were also detected by PCR, PCR-Restriction Length Fragment Polymorphism (PCR-RLFP), sequencing and phylogenetic analysis. A total of 887 freshwater snails were collected from Free State (n = 343) and Gauteng (n = 544). Five different genera of snails as well as species in the Succineidae family were documented. The snails in descending order of abundance were identified as: Physa (P.) spp. (51%), Succineidae spp. (20%), Galba (G.) truncatula (12%), Pseudosuccinea (Ps.) columella (10%), Planorbella (Pl.) duryi (6%) and Bulinus (B.) truncatus (1%). Approximately 272 DNA pools were created for genetic identification of snails and detection of trematode parasites. Schistosoma species were not detected from any of the snail species. A total prevalence of 46% was obtained for Fasciola hepatica in the identified snail species across all study sites. Overall, the highest prevalence of F. hepatica was obtained in Physa species (24%), whilst the lowest was observed in B. truncatus snails (1%). Forty three percent (43%) of the snail samples were PCR positive for Paramphistomum DNA. This is the first report of P. mexicana in South Africa. Fasciola hepatica was confirmed from all obtained snail species per study site. This is the first reported detection of F. hepatica in Pl. duryi and P. mexicana snails as well as the first confirmation of natural infection from P. acuta in South Africa.


Assuntos
Fasciola hepatica , Fasciola , Paramphistomatidae , Trematódeos , Infecções por Trematódeos , Humanos , Animais , Fasciola/genética , Paramphistomatidae/genética , África do Sul/epidemiologia , Filogenia , Fasciola hepatica/genética , Infecções por Trematódeos/epidemiologia , Infecções por Trematódeos/veterinária , Infecções por Trematódeos/parasitologia , Schistosoma/genética , Água Doce/parasitologia , Larva
6.
PLoS Negl Trop Dis ; 17(5): e0010584, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37159452

RESUMO

Understanding the transmission of Schistosoma hæmatobium in the Senegal River Delta requires knowledge of the snails serving as intermediate hosts. Accurate identification of both the snails and the infecting Schistosoma species is therefore essential. Cercarial emission tests and multi-locus (COX1 and ITS) genetic analysis were performed on Bulinus forskalii snails to confirm their susceptibility to S. hæmatobium infection. A total of 55 Bulinus forskalii, adequately identified by MALDI-TOF mass spectrometry, were assessed. Cercarial shedding and RT-PCR assays detected 13 (23.6%) and 17 (31.0%), respectively, Bulinus forskalii snails parasitized by S. hæmatobium complex fluke. Nucleotide sequence analysis identified S. hæmatobium in 6 (11.0%) using COX1 and 3 (5.5%) using ITS2, and S. bovis in 3 (5.5%) using COX1 and 3 (5.5%) using ITS2. This result is the first report of infection of Bulinus forskalii by S. hæmatobium complex parasites in Senegal using innovative and more accurate identification methods to discriminate this snail and characterize its infection by S. hæmatobium.


Assuntos
Bulinus , Schistosoma haematobium , Animais , Bulinus/parasitologia , Schistosoma haematobium/genética , Senegal , Schistosoma/genética , Caramujos/parasitologia , Rios
7.
Parasit Vectors ; 16(1): 121, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029440

RESUMO

BACKGROUND: The use of applications involving single nucleotide polymorphisms (SNPs) has greatly increased since the beginning of the 2000s, with the number of associated techniques expanding rapidly in the field of molecular research. Tetra-primer amplification refractory mutation system-PCR (T-ARMS-PCR) is one such technique involving SNP genotyping. It has the advantage of amplifying multiple alleles in a single reaction with the inclusion of an internal molecular control. We report here the development of a rapid, reliable and cost-effective duplex T-ARMS-PCR assay to distinguish between three Schistosoma species, namely Schistosoma haematobium (human parasite), Schistosoma bovis and Schistosoma curassoni (animal parasites), and their hybrids. This technique will facilitate studies of population genetics and the evolution of introgression events. METHODS: During the development of the technique we focused on one of the five inter-species internal transcribed spacer (ITS) SNPs and one of the inter-species 18S SNPs which, when combined, discriminate between all three Schistosoma species and their hybrid forms. We designed T-ARMS-PCR primers to amplify amplicons of specific lengths for each species, which in turn can then be visualized on an electrophoresis gel. This was further tested using laboratory and field-collected adult worms and field-collected larval stages (miracidia) from Spain, Egypt, Mali, Senegal and Ivory Coast. The combined duplex T-ARMS-PCR and ITS + 18S primer set was then used to differentiate the three species in a single reaction. RESULTS: The T-ARMS-PCR assay was able to detect DNA from both species being analysed at the maximum and minimum levels in the DNA ratios (95/5) tested. The duplex T-ARMS-PCR assay was also able to detect all hybrids tested and was validated by sequencing the ITS and the 18S amplicons of 148 of the field samples included in the study. CONCLUSIONS: The duplex tetra-primer ARMS-PCR assay described here can be applied to differentiate between Schistosoma species and their hybrid forms that infect humans and animals, thereby providing a method to investigate the epidemiology of these species in endemic areas. The addition of several markers in a single reaction saves considerable time and is of long-standing interest for investigating genetic populations.


Assuntos
Schistosoma haematobium , Schistosoma , Animais , Adulto , Humanos , Schistosoma haematobium/genética , Schistosoma/genética , Reação em Cadeia da Polimerase/métodos , DNA , Mutação , Senegal/epidemiologia
8.
PLoS Negl Trop Dis ; 17(3): e0010577, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36976804

RESUMO

Schistosomiasis is a neglected water-born parasitic disease caused by Schistosoma affecting more than 200 million people. Introgressive hybridization is common among these parasites and raises issues concerning their zoonotic transmission. Morphological identification of Schistosoma cercariae is difficult and does not permit hybrids detection. Our objective was to assess the performance of MALDI-TOF (Matrix Assistated Laser Desorption-Ionization-Time Of Flight) mass spectrometry for the specific identification of cercariae in human and non-human Schistosoma and for the detection of hybridization between S. bovis and S. haematobium. Spectra were collected from laboratory reared molluscs infested with strains of S. haematobium, S. mansoni, S. bovis, S. rodhaini and S. bovis x S. haematobium natural (Corsican hybrid) and artificial hybrids. Cluster analysis showed a clear separation between S. haematobium, S. bovis, S. mansoni and S. rodhaini. Corsican hybrids are classified with those of the parental strain of S. haematobium whereas other hybrids formed a distinct cluster. In blind test analysis the developed MALDI-TOF spectral database permits identification of Schistosoma cercariae with high accuracy (94%) and good specificity (S. bovis: 99.59%, S. haematobium 99.56%, S. mansoni and S. rodhaini: 100%). Most misidentifications were between S. haematobium and the Corsican hybrids. The use of machine learning permits to improve the discrimination between these last two taxa, with accuracy, F1 score and Sensitivity/Specificity > 97%. In multivariate analysis the factors associated with obtaining a valid identification score (> 1.7) were absence of ethanol preservation (p < 0.001) and a number of 2-3 cercariae deposited per well (p < 0.001). Also, spectra acquired from S. mansoni cercariae are more likely to obtain a valid identification score than those acquired from S. haematobium (p<0.001). MALDI-TOF is a reliable technique for high-throughput identification of Schistosoma cercariae of medical and veterinary importance and could be useful for field survey in endemic areas.


Assuntos
Schistosoma haematobium , Esquistossomose , Animais , Humanos , Schistosoma haematobium/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Schistosoma/genética , Esquistossomose/epidemiologia , Hibridização Genética , Análise Multivariada , Cercárias
9.
Trans R Soc Trop Med Hyg ; 117(5): 401-402, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36594275

RESUMO

The interaction between snails and species of Schistosoma results from an evolutionary process with an intrinsic host-parasite specificity to the snail genus. Faced with this fact, the recent molecular-based report on the potential infection of the thiarid Melanoides tuberculata with human schistosome should be cautiously interpreted. The high sensibility of molecular tools can result in false positives, perhaps by amplifying DNA from an external (contaminant) or invasive stage of schistosome found in this non-permissive snail host. Thus, parasitological data are mandatory to extrapolate the importance of the finding for the epidemiology and control of schistosomiasis.


Assuntos
Biomphalaria , Esquistossomose , Animais , Humanos , Biomphalaria/genética , Biomphalaria/parasitologia , Caramujos , Schistosoma/genética , Esquistossomose/epidemiologia , Schistosoma mansoni
10.
J Helminthol ; 97: e7, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36644809

RESUMO

Schistosomiasis remains a major neglected tropical disease that afflicts over 200 million people globally. Schistosomes, the aetiological agent of schistosomiasis, are parasitic flatworms that propagate between molluscan and mammalian hosts. Inside the mammalian host, schistosomes rapidly grow over 100-fold in size and develop into a sexually mature male or female that thrives in the bloodstream for several decades. Recent work has identified schistosome stem cells as the source that drives parasite transmission, reproduction and longevity. Moreover, studies have begun to uncover molecular programmes deployed by stem cells that are essential for tissue development and maintenance, parasite survival and immune evasion. Such programmes are reminiscent of neoblast-driven development and regeneration of planarians, the free-living flatworm relative of schistosomes. Over the last few decades, research in planarians has employed modern functional genomic tools that significantly enhanced our understanding of stem cell-driven animal development and regeneration. In this review, we take a broad stroke overview of major flatworm organ systems at the cellular and molecular levels. We summarize recent advances on genetic regulators that play critical roles in differentiation and maintenance of flatworm cell types. Finally, we provide perspectives on how investigation of basic parasite biology is critical to discovering new approaches to battle schistosomiasis.


Assuntos
Parasitos , Planárias , Esquistossomose , Masculino , Feminino , Animais , Planárias/genética , Schistosoma/genética , Células-Tronco , Mamíferos
11.
J Helminthol ; 96: e89, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36621866

RESUMO

There are growing concerns that communities characterized with surface water, where both humans and livestock interact for agricultural, domestic, cultural and recreational purposes, are likely to support hybridization between schistosome species infecting humans and livestock. This study therefore investigated the morphometrics of schistosome eggs recovered from human urine samples in four schistosomiasis endemic communities (Imala-Odo, Abule-Titun, Apojula and Ibaro-Oyan) along the banks of Oyan River Dam in Ogun State, Nigeria. Recovered eggs were counted, photographed, and measured with IC Measure™ for total length, maximum width and a ratio of egg shape. A total of 1984 Schistosoma eggs were analysed. Two major egg morphotypes were identified: the first represented 67.8% of the eggs, with the typical round to oval shape and mean length and width of 166 µm, 66.8 µm, respectively; the second represented 32.2% of the eggs and are more elongated, with a mean length of 198 µm, and width of 71.3 µm. Our results revealed significant variations in sizes of the schistosome eggs recovered (length: t = -35.374, degrees of freedom (df) = 1982, P = 0.000; weight: t = -10.431, df = 1982, P = 0.000), with the atypical shaped eggs appearing more elongated than expected. These eggs might represent individuals with some degree of contribution from Schistosoma bovis or possibly other Schistosoma species known to be present in Nigeria. Hence, this observation calls for further molecular studies to establish the genetic information about the miracidia from both atypical and typical eggs. It is also important to establish the presence of bona fide S. bovis infection in cattle and vector snails in the presumptive areas of hybridization.


Assuntos
Rios , Esquistossomose , Humanos , Animais , Bovinos , Nigéria/epidemiologia , Schistosoma/genética , Caramujos
13.
Acta Parasitol ; 67(4): 1778-1781, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35951223

RESUMO

PURPOSE: Visceral schistosomosis is an economically important trematode infection caused by Schistosoma spindale and S. indicum in among ruminants. The lack of sensitive diagnostic tools has often led to underestimation of the prevalence in live animals. A sensitive copro-PCR targeting partial mitochondrial gene was developed to detect Schistosoma spp. However, this protocol could not differentiate between the two species. This study was conducted to explore the possibility of species differentiation using restriction fragment length polymorphism of PCR products (PCR- RFLP). METHODS: Polymerase chain reaction was carried out to amplify mitochondrial gene of adult S. spindale and S. indicum. Copro PCR was done with schistosome-positive faecal samples. A novel PCR-RFLP was designed targeting the Hpy166II recognition sequence in the mitochondrial gene sequence of S. indicum. RESULT: The PCR using primers targeting the mitochondrial gene of S. spindale and S. indicum amplified a distinct product of approximately 454 bp with adult fluke as well as faecal DNA, which upon RFLP with Hpy166II yielded 330 bp and 124 bp products with S. indicum amplicons alone. CONCLUSION: The novel PCR-RFLP possesses the potential to be used in epidemiological surveys among bovines and in snail intermediate hosts to screen for S. spindale and S. indicum infection.


Assuntos
Schistosoma , Esquistossomose , Bovinos , Animais , Polimorfismo de Fragmento de Restrição , Schistosoma/genética , Esquistossomose/diagnóstico , Esquistossomose/epidemiologia , Esquistossomose/veterinária , Caramujos/genética , Reação em Cadeia da Polimerase/veterinária
14.
PLoS Pathog ; 18(8): e1010706, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35939508

RESUMO

Hybridization between different species of parasites is increasingly being recognised as a major public and veterinary health concern at the interface of infectious diseases biology, evolution, epidemiology and ultimately control. Recent research has revealed that viable hybrids and introgressed lineages between Schistosoma spp. are prevalent across Africa and beyond, including those with zoonotic potential. However, it remains unclear whether these hybrid lineages represent recent hybridization events, suggesting hybridization is ongoing, and/or whether they represent introgressed lineages derived from ancient hybridization events. In human schistosomiasis, investigation is hampered by the inaccessibility of adult-stage worms due to their intravascular location, an issue which can be circumvented by post-mortem of livestock at abattoirs for Schistosoma spp. of known zoonotic potential. To characterise the composition of naturally-occurring schistosome hybrids, we performed whole-genome sequencing of 21 natural livestock infective schistosome isolates. To facilitate this, we also assembled a de novo chromosomal-scale draft assembly of Schistosoma curassoni. Genomic analyses identified isolates of S. bovis, S. curassoni and hybrids between the two species, all of which were early generation hybrids with multiple generations found within the same host. These results show that hybridization is an ongoing process within natural populations with the potential to further challenge elimination efforts against schistosomiasis.


Assuntos
Schistosoma , Esquistossomose , Animais , Genoma , Genômica , Humanos , Hibridização Genética , Gado/parasitologia , Schistosoma/genética , Esquistossomose/epidemiologia , Esquistossomose/genética , Esquistossomose/veterinária
15.
PLoS Negl Trop Dis ; 16(7): e0010632, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35881651

RESUMO

Schistosomiasis, also known as bilharzia or snail fever, is a debilitating neglected tropical disease (NTD), caused by parasitic trematode flatworms of the genus Schistosoma, that has an annual mortality rate of 280,000 people in sub-Saharan Africa alone. Schistosomiasis is transmitted via contact with water bodies that are home to the intermediate host snail which shed the infective cercariae into the water. Schistosome lifecycles are complex, and while not all schistosome species cause human disease, endemic regions also typically feature animal-infecting schistosomes that can have broader economic and/or food security implications. Therefore, the development of species-specific Schistosoma detection technologies may help to inform evidence-based local environmental, food security and health systems policy making. Crucially, schistosomiasis disproportionally affects low- and middle-income (LMIC) countries and for that reason, environmental screening of water bodies for schistosomes may aid with the targeting of water, sanitation, and hygiene (WASH) interventions and preventive chemotherapy to regions at highest risk of schistosomiasis transmission, and to monitor the effectiveness of such interventions at reducing the risk over time. To this end, we developed a DNA-based biosensor termed Specific Nucleic AcId Ligation for the detection of Schistosomes or 'SNAILS'. Here we show that 'SNAILS' enables species-specific detection from genomic DNA (gDNA) samples that were collected from the field in endemic areas.


Assuntos
Ácidos Nucleicos , Esquistossomose , Animais , Cercárias , Humanos , Schistosoma/genética , Esquistossomose/epidemiologia , Água
16.
Mol Biochem Parasitol ; 251: 111495, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35835258

RESUMO

Schistosoma is a genus of trematodes causing schistosomiasis, a major neglected tropical disease infecting more than 240 million people and with 700 million people at the risk of infection in the tropical and subtropical regions of the world, especially low-income countries. For the elimination of the disease, accurate diagnostic tools are needed. Besides allowing early treatment, early detection prevents environmental contamination and in turn ensures safe water sources in the endemic areas. Cell-free DNA (cfDNA) biomarker detection is a relatively new tool, used for the diagnosis of schistosomiasis in the early stages of infection from non-invasive clinical or experimental samples. cfDNA can be detected in Schistosoma infected host body fluids such as urine, serum, saliva and tissues, mainly in blood offering significant benefits for accurate diagnosis. In the current review, we described different characteristics of cfDNA, evidencing and supporting its potential uses in Schistosoma diagnosis and the improvement of treatment effectiveness.


Assuntos
Ácidos Nucleicos Livres , Esquistossomose , Animais , Biomarcadores , Humanos , Schistosoma/genética , Esquistossomose/diagnóstico , Soro
17.
Acta Trop ; 231: 106433, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35364046

RESUMO

Schistosomes are blood-dwelling parasites that are constantly exposed to high-level oxidative stress arising from parasite-intrinsic and host defense mechanisms. To survive in their hosts, schistosomes require an antioxidant system to minimize with oxidative stress. Several schistosome antioxidant enzymes have been identified and have been suggested to play indispensable antioxidant roles for the parasite. In addition to antioxidant enzymes, non-enzymatic antioxidants including small molecules, peptides, and proteins have been identified and characterized. Neuroglobin (Ngb), a nervous system-specific heme-binding protein, has been classified as a non-enzymatic antioxidant and is capable of scavenging a variety of free radical species. The antioxidant activity of Ngb has been well-studied in humans. Ngb is involved in cellular oxygen homeostasis and reactive oxygen/nitrogen scavenging in the central and peripheral nervous systems, but its functions in schistosome parasites have not yet been characterized. In this study, we aimed to characterize the molecular properties and functions of Schistosoma mekongi Ngb (SmeNgb) using bioinformatic, biochemical, and molecular biology approaches. The amino acid sequence of Ngb was highly conserved among schistosomes as well as closely related trematodes. SmeNgb was abundantly localized in the gastrodermis, vitelline, and ovary of adult female S. mekongi worms as well as in the tegument of adult male worms. Assessment of antioxidant activity demonstrated that recombinant SmeNgb had Fe2+ chelating and hydrogen peroxide scavenging activities. Intriguingly, siRNA silencing of SmeNgb gene expression resulted in tegument pathology. Understanding the properties and functions of SmNgb will help in future development of effective treatments and vaccines against S. mekongi, other schistosome parasites, and other platyhelminths.


Assuntos
Antioxidantes , Schistosoma , Animais , Antioxidantes/metabolismo , Feminino , Masculino , Neuroglobina/metabolismo , Estresse Oxidativo , Oxigênio/metabolismo , Schistosoma/genética , Schistosoma/metabolismo
18.
PLoS Negl Trop Dis ; 15(12): e0010062, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34941866

RESUMO

Schistosomes cause schistosomiasis, the world's second most important parasitic disease after malaria in terms of public health and social-economic impacts. A peculiar feature of these dioecious parasites is their ability to produce viable and fertile hybrid offspring. Originally only present in the tropics, schistosomiasis is now also endemic in southern Europe. Based on the analysis of two genetic markers the European schistosomes had previously been identified as hybrids between the livestock- and the human-infective species Schistosoma bovis and Schistosoma haematobium, respectively. Here, using PacBio long-read sequencing technology we performed genome assembly improvement and annotation of S. bovis, one of the parental species for which no satisfactory genome assembly was available. We then describe the whole genome introgression levels of the hybrid schistosomes, their morphometric parameters (eggs and adult worms) and their compatibility with two European snail strains used as vectors (Bulinus truncatus and Planorbarius metidjensis). Schistosome-snail compatibility is a key parameter for the parasites life cycle progression, and thus the capability of the parasite to establish in a given area. Our results show that this Schistosoma hybrid is strongly introgressed genetically, composed of 77% S. haematobium and 23% S. bovis origin. This genomic admixture suggests an ancient hybridization event and subsequent backcrosses with the human-specific species, S. haematobium, before its introduction in Corsica. We also show that egg morphology (commonly used as a species diagnostic) does not allow for accurate hybrid identification while genetic tests do.


Assuntos
Genoma Helmíntico , Hibridização Genética , Schistosoma haematobium/crescimento & desenvolvimento , Schistosoma haematobium/genética , Schistosoma/crescimento & desenvolvimento , Schistosoma/genética , Animais , Tamanho Corporal , Bulinus/parasitologia , Quimera/anatomia & histologia , Quimera/genética , Quimera/crescimento & desenvolvimento , Vetores de Doenças , Europa (Continente) , Feminino , Humanos , Masculino , Schistosoma/anatomia & histologia , Schistosoma haematobium/anatomia & histologia , Esquistossomose/parasitologia , Caramujos/parasitologia
19.
PLoS Negl Trop Dis ; 15(10): e0009823, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34606509

RESUMO

There is a need for recent information on intermediate snail hosts of schistosomes in The Gambia; the previous studies were conducted over three decades ago. This study assessed the incidence, species diversity, distribution and infection status of schistosome intermediate snail hosts in the country. Malacological surveys were conducted in all 5 regions of The Gambia: Central River Region (CRR), Upper River Region (URR), Western Region (WR), Lower River Region (LRR) and North Bank Region (NBR). Sampling of snails was undertaken at 114 sites that included permanent water bodies such as streams (bolongs), rice fields, irrigation canals and swamps; and temporal (seasonal) laterite pools. Ecological and physicochemical factors of sites were recorded. Snails were identified morphologically and screened for schistosome infections using molecular techniques. Freshwater snails were found at more than 50% (60/114) of sites sampled. While three species of Bulinus were collected, no Biomphalaria snails were found in any of the sites sampled. Of the total 2877 Bulinus snails collected, 75.9% were identified as Bulinus senegalensis, 20.9% as Bulinus forskalii and 3.2% as Bulinus truncatus. Seasonal pools produced the largest number of snails, and CRR was the region with the largest number of snails. Bulinus senegalensis was found more in seasonal pools as opposed to permanent sites, where B. forskalii and B. truncatus were observed to thrive. Bulinus snails were more common in seasonal sites where aquatic vegetation was present. In permanent sites, the abundance of snails increased with increase in water temperature and decrease in water pH. Bulinus senegalensis was found infected with both S. haematobium and S. bovis, while B. forskalii and B. truncatus had only S. bovis infection. While the human parasite S. haematobium was restricted to just four sites, the livestock parasite S. bovis had a much more widespread geographical distribution across both CRR and URR. This new information on the distribution of intermediate snail hosts of schistosomes in The Gambia will be vital for the national schistosomiasis control initiative.


Assuntos
Biodiversidade , Bulinus/fisiologia , Schistosoma/isolamento & purificação , Distribuição Animal , Animais , Bulinus/classificação , Bulinus/parasitologia , Reservatórios de Doenças/classificação , Reservatórios de Doenças/parasitologia , Vetores de Doenças , Gâmbia , Humanos , Rios/parasitologia , Schistosoma/classificação , Schistosoma/genética , Esquistossomose/parasitologia , Esquistossomose/transmissão
20.
PLoS Negl Trop Dis ; 15(9): e0009706, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34473691

RESUMO

BACKGROUND: Mekong schistosomiasis is a parasitic disease caused by the blood-dwelling fluke Schistosoma mekongi. This disease contributes to human morbidity and mortality in the Mekong region, posing a public health threat to people in the area. Currently, praziquantel (PZQ) is the drug of choice for the treatment of Mekong schistosomiasis. However, the molecular mechanisms of PZQ action remain unclear, and Schistosoma PZQ resistance has been reported occasionally. Through this research, we aimed to use a metabolomic approach to identify the potentially altered metabolic pathways in S. mekongi associated with PZQ treatment. METHODOLOGY/PRINCIPAL FINDINGS: Adult stage S. mekongi were treated with 0, 20, 40, or 100 µg/mL PZQ in vitro. After an hour of exposure to PZQ, schistosome metabolites were extracted and studied with mass spectrometry. The metabolomic data for the treatment groups were analyzed with the XCMS online platform and compared with data for the no treatment group. After low, medium (IC50), and high doses of PZQ, we found changes in 1,007 metabolites, of which phosphatidylserine and anandamide were the major differential metabolites by multivariate and pairwise analysis. In the pathway analysis, arachidonic acid metabolism was found to be altered following PZQ treatment, indicating that this pathway may be affected by the drug and potentially considered as a novel target for anti-schistosomiasis drug development. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that arachidonic acid metabolism is a possible target in the parasiticidal effects of PZQ against S. mekongi. Identifying potential targets of the effective drug PZQ provides an interesting viewpoint for the discovery and development of new agents that could enhance the prevention and treatment of schistosomiasis.


Assuntos
Anti-Helmínticos/administração & dosagem , Ácido Araquidônico/metabolismo , Praziquantel/administração & dosagem , Schistosoma/efeitos dos fármacos , Schistosoma/metabolismo , Esquistossomose/tratamento farmacológico , Animais , Resistência a Medicamentos , Feminino , Humanos , Estágios do Ciclo de Vida/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Praziquantel/farmacologia , Schistosoma/genética , Schistosoma/crescimento & desenvolvimento , Esquistossomose/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...